Memoryless scalar quantization for random frames

نویسندگان

چکیده

Memoryless scalar quantization (MSQ) is a common technique to quantize generalized linear samples of signals. The non-linear nature makes the analysis corresponding approximation error challenging, often resulting in use simplifying assumption, called “white noise hypothesis” (WNH) that useful, yet also known be not rigorous and, at least certain cases, valid. We obtain reconstruction estimates without relying on WNH setting where fixed deterministic signal are obtained using (the matrix of) random frame with independent isotropic sub-Gaussian rows; quantized MSQ; and reconstructed linearly. establish non-asymptotic bounds explain observed decay rate as number measurements grows, which special case Gaussian frames show approaches (small) non-zero constant lower bound. extend our methodology dithered noisy settings well compressed sensing we agree empirical observations, again, resorting WNH.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalar Quantization of Alpha Stable Distributed Random Variables

E cient stochastic data processing preassumes proper modeling of the statistics of the data source This paper addresses the issues that arise when the data to be pro cessed exhibits statistical properties which depart signi cantly from those implied under the Gaussianity assump tion This type of data has been found to be encountered in image speech and other compression applications For the cas...

متن کامل

Wavelet Scalar Quantization

Fingerprints are today the most widely used biometric features for personal identification. With the increasing usage of biometric systems the question arises naturally how to store and handle the acquired sensor data. Our algorithm for the digitized images is based on adaptive uniform scalar quantization of discrete wavelet transform sub band decomposition. This technique referred to as the wa...

متن کامل

Scalar and Vector Quantization

Quantization is the process of mapping a continuous or discrete scalar or vector, produced by a source, into a set of digital symbols that can be transmitted or stored using a finite number of bits. In the case of continuous sources (with values in R or Rn) quantization must necessarily be used if the output of the source is to be communicated over a digital channel. In this case, it is, in gen...

متن کامل

tight frame approximation for multi-frames and super-frames

در این پایان نامه یک مولد برای چند قاب یا ابر قاب تولید شده تحت عمل نمایش یکانی تصویر برای گروه های شمارش پذیر گسسته بررسی خواهد شد. مثال هایی از این قاب ها چند قاب های گابور، ابرقاب های گابور و قاب هایی برای زیرفضاهای انتقال پایاست. نشان می دهیم که مولد چند قاب تنک نرمال شده (ابرقاب) یکتا وجود دارد به طوری که مینیمم فاصله را از ان دارد. همچنین مسایل مشابه برای قاب های دوگان مطرح شده و برخی ...

15 صفحه اول

Hierarchical Distributed Scalar Quantization

Scalar quantization is the most practical and straightforward approach to signal quantization. However, it has been shown that scalar quantization of oversampled or Compressively Sensed signals can be inefficient in terms of the rate-distortion trade-off, especially as the oversampling rate or the sparsity of the signal increases. Recent theoretical work has provided some insights on improving ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Sampling theory, signal processing, and data analysis

سال: 2021

ISSN: ['2730-5724', '1530-6429', '2730-5716']

DOI: https://doi.org/10.1007/s43670-021-00012-4